Effect of intracellular dialysis of ATP on the hyperpolarization-activated cation current in rat dorsal root ganglion neurons.

نویسندگان

  • You Komagiri
  • Naoki Kitamura
چکیده

The mechanism of the effect of intracellular ATP on the hyperpolarization-activated non-selective cation current (Ih) in rat dorsal root ganglion neurons was investigated using a whole cell voltage-clamp technique. Under voltage-clamp conditions, Ih was activated by hyperpolarizing pulses raised to a voltage of between -70 and -130 mV. The activation curve of Ih in rat dorsal root ganglion (DRG) neurons shifted by about 15 mV in the positive direction with an intracellular solution containing 1 mM cAMP. When ATP (2 mM) was applied intracellularly, the half-maximal activation voltage (Vhalf) of Ih shifted from -97.4 +/- 1.9 to -86.8 +/- 1.6 mV, resulting in an increase in the current amplitude of Ih by the pulse to between -80 and -90 mV. In the presence of an adenylate cyclase inhibitor, SQ-22536 (100 microM), the intracellular dialysis of ATP also produced a shift in the voltage-dependence of Ih in rat DRG neurons, indicating that the effect of ATP was not caused by cAMP converted by adenylate cyclase. Intracellular dialysis of a nonhydrolysable ATP analog, AMP-PNP or ATP-gamma-S, also produced a positive shift in the voltage-dependence of Ih activation, suggesting that the effect of ATP results from its direct action on the channel protein. These results indicate that cytosolic ATP directly regulates the voltage dependence of Ih activation as an intracellular modulating factor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Neuroprotective Effect of Nepeta menthoides on Axotomized Dorsal Root Ganglion Sensory Neurons in Neonate Rats

Background and Objective: Sensory neurons have critical role in improvement of functional outcome of any neuroprotective strategy. The herbal medicine Nepeta menthoides has been reported to have anti-apoptotic effect on axotomized spinal motoneurons. In the present study, the putative neuroprotective effect of Nepeta menthoides on the axotomized dorsal root ganglion sensory neurons in neonate r...

متن کامل

Chronic cervical radiculopathic pain is associated with increased excitability and hyperpolarization-activated current (Ih) in large-diameter dorsal root ganglion neurons

Cervical radiculopathic pain is a very common symptom that may occur with cervical spondylosis. Mechanical allodynia is often associated with cervical radiculopathic pain and is inadequately treated with current therapies. However, the precise mechanisms underlying cervical radiculopathic pain-associated mechanical allodynia have remained elusive. Compelling evidence from animal models suggests...

متن کامل

Morphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat

Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...

متن کامل

Inhibition of Hyperpolarization-Activated Cation Current in Medium-Sized DRG Neurons Contributed to the Antiallodynic Effect of Methylcobalamin in the Rat of a Chronic Compression of the DRG

Recently several lines of evidence demonstrated that methylcobalamin (MeCbl) might have potential analgesic effect in experimental and clinical studies. However, it was reported that MeCbl had no effect on treating lumbar spinal stenosis induced pain. Thus, the effects of short-term and long-term administration of MeCbl were examined in the chronic compression of dorsal root ganglion (CCD) mode...

متن کامل

Adrenomedullin protects rat dorsal root ganglion neurons against doxorubicin-induced toxicity by ameliorating oxidative stress

Objective(s): Despite effective anticancer effects, the use of doxorubicin (DOX) is hindered due to its cardio and neurotoxicity. The neuroprotective effect of adrenomedullin (AM) was shown in several studies. The present study aimed to evaluate the possible protective effects of AM against DOX-induced toxicity in dorsal root ganglia (DRGs) neurons. M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 90 4  شماره 

صفحات  -

تاریخ انتشار 2003